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ABSTRACT

Motivation: High-throughput techniques facilitate the simultaneous
measurement of DNA copy number at hundreds of thousands of sites
on a genome. Older techniques allow measurement only of total
copy number, the sum of the copy number contributions from the
two parental chromosomes. Newer single nucleotide polymorphism
(SNP) techniques can in addition enable quantifying parent-specific
copy number (PSCN). The raw data from such experiments are two-
dimensional, but are unphased. Consequently, inference based on
them necessitates development of new analytic methods.
Methods: We have adapted and enhanced the circular binary
segmentation (CBS) algorithm for this purpose with focus on paired
test and reference samples. The essence of paired parent-specific
CBS (Paired PSCBS) is to utilize the original CBS algorithm to identify
regions of equal total copy number and then to further segment these
regions where there have been changes in PSCN. For the final set
of regions, calls are made of equal parental copy number and loss
of heterozygosity (LOH). PSCN estimates are computed both before
and after calling.
Results: The methodology is evaluated by simulation and on
glioblastoma data. In the simulation, PSCBS compares favorably to
established methods. On the glioblastoma data, PSCBS identifies
interesting genomic regions, such as copy-neutral LOH.
Availability: The Paired PSCBS method is implemented in an
open-source R package named PSCBS, available on CRAN
(http://cran.r-project.org/).
Contact: olshena@biostat.ucsf.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Changes in the number of copies of genomic DNA is an
important step in the progression of cancer. Comparative genomic
hybridization (CGH) was developed to identify these changes at a
resolution of 10–20 Mb (Kallioniemi et al., 1992). Platforms for
copy number (CN) analysis that employ microarray technology and
that achieve high resolution include array CGH (Pinkel et al., 1998),
ROMA (Lucito et al., 2003) and SNP arrays (Hardenbol et al.,
2005; Peiffer et al., 2006; Zhao et al., 2004). Current technology
has improved the resolution to as low as 1 kb. With custom arrays
also available, the resolution in particular neighborhoods can be even
higher.

Heretofore, CN analysis has consisted primarily of examining
total copy number (TCN). TCN is the sum of the CNs from the two
parental chromosomes. For normal human cells, total CN is two,
one from each parental chromosome. SNP arrays allow separate
estimates of CN from the parental chromosomes. This is parent-
specific copy number (PSCN).

PSCN may be interesting for two major reasons. First, there may
be alleles that differentially undergo CN change (Nagase et al.,
2003). Estimating PSCN would help elucidate this situation. Second,
when the total CN is C, the PSCNs may be more complicated than
(1,C−1). For instance, diploid (C =2) CN is maintained when
one parental copy is lost and the other is doubled. This type of
alteration is called copy-neutral loss-of-heterozygosity (CN-LOH),
and it occurs often in many cancers including glioblastoma (Kuga
et al., 2008) and hematologic malignancies (O’Keefe et al., 2010).
Such a region would be assumed normal if there was analysis only
of total CN.

Direct estimates of PSCN can be made only for SNPs at which
a subject is heterozygous. Homozygous SNPs are not directly
informative because all the CN signal is in one allele. For example,
if both parents contributed G, then there would only be a G CN
signal, and this would result in no information additional to that
contained in total CN. For heterozygous SNPs, however, there are
two components to the CN information. If the subject was GT at
a SNP, then there would be a CN estimate corresponding to G and
one corresponding to T. One of the CNs would be expected to have
come from one parent and the other to have come from the other
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parent. Additionally, the data are unphased; it is not directly known
which measurement is associated with which parental chromosome.

CN alterations apply to contiguous regions, and the data on CN
derived from microarrays can be noisy. Therefore, methods have
been developed to analyze CN data that rely on the underlying spatial
correlation. The idea is to split the genome into regions of equal total
CN. Methods for this have included direct segmentation (Olshen
et al., 2004; Picard et al., 2005; Venkatraman and Olshen, 2007),
hidden Markov models (HMMs) (Fridlyand et al., 2004; Guha et al.,
2008; Lai et al., 2008) and smoothing (Hsu et al., 2005; Tibshirani
and Wang, 2008). When the earlier methods were compared (Lai
et al., 2005; Willenbrock and Fridlyand, 2005), direct segmentation
methods performed best.

The purpose of the present article is to extend segmentation
to allele-specific data. We cannot simply perform two separate
segmentations, one for each parental chromosome, because the data
are unphased. Therefore, other techniques are needed. As part of our
algorithm, we use the circular binary segmentation (CBS) method
(Olshen et al., 2004; Venkatraman and Olshen, 2007), although
any good segmentation method could replace CBS in our overall
procedure. We call our method Paired Parent-Specific CBS (‘Paired
PSCBS’ or just ‘PSCBS’), while acknowledging that due to the
lack of phase information, we cannot assign segmentation-based
estimates to the paternal or maternal chromosomes.

Other approaches to PSCN segmentation bear some resemblance
to PSCBS. Here, we focus on the BAF segmentation method of Staaf
et al. (2008), especially since their study provides a comparison
to existing methods. It is similar in that it relies on CBS and it
adapts to datasets consisting of paired tumor and normal samples.
It essentially segments the mirrored B-allele frequency (mirrored
BAF), which is the ratio of the higher parental copy number to the
total copy number, after removing all homozygotes identified in the
normal samples. It differs from PSCBS, as discussed in Section 2,
in that it segments only heterozygous SNPs, whereas Paired PSCBS
has an advantage in that it utilizes all SNPs as well as any non-
polymorphic loci. Another advantage of Paired PSCBS over BAF
segmentation is that it uses the normal sample to more accurately
quantify the tumor data (Bengtsson et al., 2010).

Another paired method of which we are aware is a hidden Markov
method that segments jointly on TCN and mirrored BAF (Lamy
et al., 2007). But since it is specific to Affymetrix arrays, and we are
interested only in general methods, we did not evaluate it. During
the review of this article, Van Loo et al. (2010) published a paired
joint segmentation method that was not studied here.

Other methodologies exist that are not based on paired samples.
LaFramboise et al. (2005) used CBS to segment total CN data, and
then estimated parental CN within segments. By not segmenting the
allele-specific data, certain events may be missed. Li et al. (2008)
developed a similar procedure using an HMM. They referred to the
mirrored BAF as the major copy proportion, so their method is called
MCP. SOMATICs (Assié et al., 2008) uses the BAF, which is the
ratio of the B-allele to the total CN, to identify CN abnormalities
that are then confirmed by the total CN. QuantiSNP (Colella et al.,
2007) and PennCNV (Wang et al., 2007) are two HMM methods that
rely on the same six-state model. Sun et al. (2009) is a ‘2d’ HMM
method in the same vein as PennCNV and QuantiSNP, but that has
been adapted to cancer studies. Recently, GAP (Popova et al., 2009)
segments total CN and allelic ratio independently and then considers
the segments defined by the union of the two sets of change-points.

Chen et al. (2011) extended their HMM methodology (Lai et al.,
2008) to allele-specific data. An advantage of Chen’s HMM method
(PSCN) is that there is no limit on the number of states. In addition,
Greenman et al. (2010) developed the PICNIC method, which is
also based on an HMM and assigns integer CN states.

In the present article, Section 2 covers our methods. Section 3
contains simulations that show the effectiveness of our procedure, as
well as an example drawn from glioblastoma data. Finally, Section 4
has discussion.

2 METHODS
The paired parent-specific CBS (Paired PSCBS) algorithm leverages the CBS
method (Olshen et al., 2004; Venkatraman and Olshen, 2007) for segmenting
total CN data to the 2D unphased data arising from SNP arrays. The algorithm
depends on paired test (tumor) and reference (normal) samples that are
hybridized to separate arrays.

2.1 Parental-specific data at the locus level
In this subsection, we introduce the locus-level components that go into the
segmentation and calling.

2.1.1 Total CNs and allele B fractions SNP arrays quantify both total
and allele-specific signals at the loci of a large number of SNPs. Some
platforms also provide total CN estimates (TCNs) at a large number of non-
polymorphic loci. For a locus i=1,2,...,m of either type, on a chromosome,
chromosome arm or other region under consideration, let Xi denote the
observed total CN ratio for a test sample relative to a reference (here a
matched normal sample), where the ratio is multiplied by two for a diploid
genome. If the locus is a SNP, we also have allele-specific CNs, which we
denote (Ai,Bi), where the TCN is Xi =Ai +Bi (Fig. 1a). If the subject is
homozygous at SNP i, then the minimum of Ai and Bi should be zero plus
noise, and thus all of the true CN signal is in one of the alleles. If the subject
is heterozygous at SNP i, then there should be significantly non-zero CN for
both Ai and Bi, and in the case there is balanced heterozygosity, then Ai and
Bi should be approximately equal.

A convenient representation for SNPs is (Xi,βi), where βi =Bi/Xi, which
is the ratio of the B-allele CN to the total CN in the test sample (Fig. 1b). This
quantity is known as the allele B fraction (BAF) (Bengtsson et al., 2010). It
has also been called the B-allele frequency (Staaf et al., 2008), which may be
misleading because it is not a frequency in the strict statistical sense in that
it does not involve a count. We note that for a homozygous SNP i, βi is near
zero or one, e.g. for SNPs that are AA and BB as well as AAA and BBB.
For a balanced heterozygous SNP, βi is near one half, e.g. for SNPs that are
AB as well as AABB. Note that by using this representation, we have a total
CN signal Xi for any locus, regardless of whether it is a SNP.

2.1.2 Allelic imbalances The total CN signals do not contain information
on allelic imbalances. In addition, homozygous SNPs do not carry
information on allelic imbalances, since the two parental components cannot
be separated by the array. It is only SNPs that are heterozygous in the
germline that provide this information (Assié et al., 2008; Bengtsson et al.,
2010; Peiffer et al., 2006; Staaf et al., 2008). Because of this, all information
on allelic imbalances is preserved in what we call decrease in heterozygosity
(DH) (Bengtsson et al., 2010). DH is defined for heterozygous SNPs as

ρi =2|βi −0.5|. (1)

It provides a measure of how much the allelic composition of the tumor
has diverged from the normal (germline) state. It is similar to the mirrored
BAF (Staaf et al., 2008).

When there is a parental CN change, true TCN, true DH or both can
change. We specify cases where only one of them changes. For instance,
in a tumor without normal contamination where PSCNs shift from (0,1) to
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Fig. 1. Total CN (a), raw allele B fractions (b), TumorBoost normalized
BAFs (c) and DH (d) of chromosome 7 of TCGA sample TCGA-02-0007.
Normalized BAFs are less noisy than raw BAFs. As TCN quantifies the
difference in total CN between tumor and normal, DH does the same for
allelic ratios. From (a) and (d), we conclude that the p-arm (0–60 Mb) has
approximately balanced CN between the two parental chromosomes, while
the q-arm (60–160 Mb) has extreme allelic imbalance, indicating LOH.

(0,2), the change can in principal only be observed in TCN. Conversely,
when there is a shift from (1,1) to (0,2), the change can only be observed
in DH.

2.1.3 Identifying heterozygous SNPs In order to calculate the DHs, SNPs
that are heterozygous in the germline must be identified. Genotypes can be
called from the allele-specific signals (A′

i,B
′
i), or equivalently from (X ′

i ,β
′
i)

of the normal sample. By default, Paired PSCBS uses the naive genotyping
algorithm proposed by Bengtsson et al. (2010), which calls the genotypes
by thresholding on the observed density function of the normal BAFs (β′

i).
One may substitute these in PSCBS with more sophisticated genotype calls.
However, as Bengtsson et al. (2010) showed, a naive genotype caller will
do nearly as well for the purpose of PSCN segmentation.

2.1.4 Normalization of DH signals Another advantage of having a normal
sample is that systematic SNP effects can be estimated from the matched
normal and be removed from the tumor signals. More specifically, Bengtsson
et al. (2010) suggested adjusting the BAFs to eliminate SNP-specific effects
using a procedure called TumorBoost (Fig. 1c). For heterozygous SNPs,
which are the only ones that need to be normalized for PSCBS, the
TumorBoost adjustment is

βTB
i =

{
0.5(βi/β

′
i) if βi <β′

i
1−0.5(1−βi)/(1−β′

i) otherwise,
(2)

where β′
i corresponds to allele B fractions of the matched normal

sample. Note that the TumorBoost correction is performed independently
of chromosomal events. In Bengtsson et al. (2010), it was shown
that utilizing TumorBoost significantly improves the power to detect
PSCN aberrations; in some cases, the power increases dramatically. The
corresponding TumorBoost-normalized DH, ρTB

i =2|βTB
i −0.5|, follows

immediately (Fig. 1d). For convenience, we drop the TB superscript and
assume the DH has been TumorBoost-normalized unless stated otherwise.

2.2 Segmentation of parent-specific CNs
It was shown in the previous section that the data carrying information on
parent-specific chromosomal aberrations are contained in (Xi,ρi) for loci
i=1,2,...,m, where total CNs (Xi) are defined for all loci and DHs (ρi) are
defined only for SNPs that are heterozygous in the germline. We next identify
segments of constant parent-specific CN using a two-step segmentation in
which an initial set of change-points is identified from total CN signals (Xi),
which is then updated with additional change-points from the normalized
decrease-of-heterozygosity signals (ρi).

The two-step PSCBS approach is capable of detecting a PSCN change
while TCN remains constant. As mentioned in Section 2.1.2, it can detect
CNs changed from (1,1) to (0,2) in the case of no normal contamination,
which would not be recognized by TCN segmentation alone. O’Keefe et al.
(2010) provide detailed descriptions on how copy-neutral changes, where a
loss in one chromosome is counter-balanced by a perfectly overlapping gain
in the other, may occur. Note also that such a copy-neutral event may also
be observed instead of a sequence of change-points in regions where the
coverage is low, e.g. in the centromere. Likewise, a change from CN-LOH
(0,2) to a deletion (0,1) would not be detectable from the DHs alone (except
when there is normal contamination).

Even in cases where a chromosomal change-point is reflected in both
the true TCN and DH, the power to detect a particular change-point differs
between TCN and DH as a function of the type of aberration. This is explained
in great detail and argued for both theoretically and empirically by Bengtsson
et al. (2010). In this context, it means that a true change-point may be
missed in the initial round of TCN segmentation, but later be identified by
a segmentation of DHs. This also emphasizes an advantage that PSCBS has
over, for instance, Staaf’s BAF segmentation and PICNIC, both of which
segment based on only one of the two signals available; PSCBS utilizes the
signal available in both TCN and DH to detect change-points.

2.2.1 Identification of change-points in total CNs CBS is applied to total
CNs ratios Xi. We do not log these ratios because absolute values and their
variances increase without bound as the total CN decreases without bound.
Note that in Olshen et al. (2004) and Venkatraman and Olshen (2007), log-
ratios were indeed used. However, the main reason then was that two-color
DNA microarrays were used at the time and log-ratios work well in this
context.

CBS identifies change-points using T =max1≤i<j<m |Tij|, where Tij is the
two sample t-statistic that compares the mean of the observations with index
from i+1 to j, to the mean of the rest of the observations. That is

Tij = Ȳij − Z̄ij

sij{(j−i)−1 +(m−j+i)−1}1/2
, (3)

where Ȳij = (Xi+1 +···+Xj)/(j−i),Z̄ij = (X1 +···+Xi +Xj+1 +···+Xm)/
(m−j+i), and s2

ij is the corresponding sample variance. If the P-value
corresponding to T is less than some predetermined threshold αTCN, we
estimate the change-points as i and j for which Tij =T and repeat the
procedure on the resulting segments. This process is repeated recursively
and continues until no further change-points can be found. See Venkatraman
and Olshen (2007) for a discussion of how to estimate P-values quickly in
this context.

2.2.2 Identification of additional change-points using DH In the second
round of segmentation, the segments defined by CBS in the first round are
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split further based on the heterozygous SNPs. We identify additional change-
points from DH (ρi) using CBS on each such subsegment. Change-points are
not pruned; that is, those already identified in the TCN segmentation remain
after the DH segmentation. New potential change-points are kept if their
associated P-values are less than αDH. We specify αTCN and αDH so that,
due to the Bonferroni inequality, our overall α≤αTCN +αDH is at a desired
level. We choose αTCN ≥αDH because most changes should be found in the
first round of segmentation and total CN is available for every locus. The
default for PSCBS is αTCN =0.009 and αDH =0.001 so that α≤0.01.

2.2.3 Defining boundaries of segments The genomic position of a change-
point is formally (Page, 1954) the locus after which the distribution of the
data changes. But the actual change in CN can be anywhere in between the
change-point locus and the next locus (conditional on having identified the
change-point correctly). This was not a major problem when segmenting
on TCN, but it is when segmenting on DH, since there are TCN loci that
do not fall into either DH segment. As a convention, for DH segmentation
we average the genomic positions between the change-point and the next
heterozygous (DH) locus, and fix the change-point at the TCN locus
immediately before this average.

2.2.4 Parent-specific CNs at the (non-called) region level For each
segment s=1,...,S defined by the change-points, the region-level TCN and
DH, (C̄s,ρ̄s), are estimated as:

C̄s =mean
i∈Is

Xi,

ρ̄s =mean
i∈Is

ρi, (4)

where Is is the set of loci that are located within segment s, that is, in region
(xs−1,xs] and where non-defined DHs are excluded when calculating ρ̄s. The
corresponding minor and major CNs, (C̄1,s,C̄2,s), are

C̄1,s = 1

2
(1− ρ̄s)C̄s

C̄2,s = C̄s −C̄1,s. (5)

so that C̄s = C̄1,s +C̄2,s as well as ρ̄s = (C̄2,s −C̄1,s)/C̄s holds.

2.2.5 Bootstrapping We utilize simple percentile bootstrap techniques to
estimate standard errors and confidence intervals for the above estimates of
CN. Later, we use these estimates in the calling described in Section 2.3.
We resample the loci, that is (Xi,ρi), per segment with replacement such
that the number of SNPs and the number of non-polymorphic loci, as well
as the number of homozygous and heterozygous SNPs per segment, are
preserved in each bootstrap sample. By default, PSCBS draws B=1000
bootstrap samples.

2.3 Calling parent-specific CN
In this subsection, we detail how to distinguish for every segment among the
cases discussed in Section 2.1.1, i.e. equal PSCN, unequal PSCN with both
parental CNs positive and LOH. Once calls are made, the PSCN estimates are
updated. The segmentation and bootstrapping procedures rely on a minimum
of prespecified parameters. Due to technical artifacts, normal contamination
and lack of clonality in the tumor, some assumptions or tuning parameters
are needed here. Note that calls cannot be made for very small segments
since CN estimates are unstable, and the bootstrap estimates break down. In
what follows, we will for clarity of notation drop segment index s.

2.3.1 Calling allelic balance We start by distinguishing the case of equal
PSCN from the case of unequal PSCN and both parental CNs positive. The
former is a case of allelic balance, and the latter is a case of allelic imbalance.
Formally, our null hypothesis for allelic balance is C1 =C2, or equivalently
DH=0.

As discussed in Section 2.2.5, we estimate confidence intervals for DH,
and our tests are based on them. For every region, we take B bootstrap
samples and estimate the region-level DH ρ̄∗

1,...,ρ̄∗
B as in the original data.

We reject the null hypothesis if

ρ̄∗{αAB} −�AB >0, (6)

where ρ̄∗{α} is the α:th percentile of ρ̄∗
1,...,ρ̄∗

B and �AB is a bias-correction
term. This rejection region corresponds to the one-sided (1−αAB):th
confidence interval not containing zero. The main reason for �AB is that
ρ̄ will always be a biased estimate of the true DH (when near zero), because
DH is by definition always non-negative, cf. Equations (1) and (4), or
equivalently because minor CN is by definition always less than or equal to
major CN. This bias increases with the noise level. Therefore, we estimate
�AB from the data in such a way that it adapts to the noise level, as further
described in the Supplementary Materials. The procedure for choosing �AB

assumes that at least some of the genome is in balance. This is a safe
assumption for most samples. Nevertheless, there should be some safeguard
in case it is not true. We recommend further examination if the resulting �AB

is suspiciously large, e.g. �AB >0.20. In such cases, a predefined choice of
�AB may be used. Our default value for αAB is 0.05.

2.3.2 Calling LOH Analogous to the above, we use a test to call LOH,
where the null hypothesis is that a segment is not in LOH, or equivalently,
the minor CN is ‘non-zero’ (The exact meaning of ‘non-zero’ will be
explained below.) Segments already called to be in allelic balance will not
be considered. Formally, we reject the null hypothesis if

C̄∗
1{1−αLOH}−�LOH <0, (7)

where C̄∗
1{α} is the α:th percentile of B bootstrapped C̄∗

1,1,...,C̄
∗
1,B mean

estimates and �LOH ≥0 is a parameter that is derived from data. Choosing
�LOH, and, more generally, calling LOH requires strong assumptions. Even
with these assumptions, there are difficulties.

Definition of LOH: LOH is not obviously defined when considering a
cell population from a tumor study. The measured CN signals represent the
average of a large number of often non-homogeneous cells, so that it is not
clear what ‘zero’ minor CN is. This is because the tumor tissue extract will
likely consist of some normal cells and possibly a mixture of different tumor
cells. Thus, the term LOH can refer to the ‘zero’ minor CN state either of the
mixed tumor and normal cells, or of just the (possibly) heterogeneous tumor
cells. In either case, we cannot expect all cells to have truly zero minor CNs
in segments that we wish to call LOH even when most cells do. Therefore,
one option is to consider a segment to be in LOH when the fraction of the
cells that has lost the contribution from one parent is ν, where 0≤ν≤1.
Exactly which definition of LOH and which value of ν to use depends on the
underlying biological question and needs to be chosen by the investigator.

On background signals including normal contamination: In theory, and
as proposed by several (Assié et al., 2008; Lamy et al., 2007; Popova
et al., 2009; Staaf et al., 2008; Sun et al., 2009; Van Loo et al., 2010;
Yamamoto et al., 2007), it should be possible to estimate the amount of
normal contamination from data. Unfortunately, its impacts on the PSCN
estimates is confounded by additional sources of background signal, which
makes it difficult in practice.

In the Supplementary Materials, we suggest a procedure for setting
�LOH that reflects both the amount of background signal (including normal
contamination) and the desired fraction (ν) of tumor cells to be in LOH.
We note that the former component is data driven, while the latter is a
predetermined data-independent tuning parameter. Stricter calling of LOH
would be accomplished by decreasing ν. Unfortunately, it is not unusual to
have a tumor with no LOH. In such a case, the above procedure fails to
provide a useful �LOH. For this reason, as a rough guide, values of �LOH

>0.75 should be evaluated further and possibly be replaced by a fixed value.
By default, we use ν=0.50 and αLOH =0.05.
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2.3.3 Estimating CN from called regions If LOH has been found in the
tumor, then the called PSCNs are estimated to be 0 and the total CN, that
is (Ĉ1,Ĉ2)= (0,C̄). Otherwise, if the two parental CNs are called equal,
then the PSCNs are both estimated to be the total CN divided by 2, that is
(Ĉ1,Ĉ2)= (C̄/2,C̄/2). If they are unequal, the called PSCN estimates are the
same as the non-called PSCN estimates, that is, (Ĉ1,Ĉ2)= (C̄1,C̄2). Note that
in the first two cases DH is not part of the CN estimates. Also note that for all
segments it holds that Ĉ = Ĉ1 +Ĉ2 and ρ̂= (Ĉ2 −Ĉ1)/Ĉ, cf. Section 2.2.4.

2.4 Algorithm and implementation
The paired parent-specific CBS and calling method, referred to as Paired
PSCBS, is available in the PSCBS package, which is an open-access and
open-source implementation in R. It is available on CRAN (http://cran.r-
project.org/).

The method is designed and implemented to work with data from
any generic SNP microarray technology, e.g. Affymetrix and Illumina.
Great efforts have been made to make the implementation robust and
straightforward to use. The low-level application programming interface
(API) uses standard R data types, making it easy to incorporate
PSCBS elsewhere. A high-level API that plugs into the Aroma Project
framework (Bengtsson et al., 2008) is planned.

Since PSCBS is a single-pair method, it can be used to process any
number of samples in bounded memory. The computational complexity to
segment a sample with PSCBS is only slightly more than that for CBS. The
reason for this is that the DH segmentation is significantly faster than TCN
segmentation, because the regions being segmented are smaller and because
homozygotes and non-polymorphic loci are not included.

3 RESULTS
Here, we assess the performance and correctness of Paired PSCBS.
First, we assess the performance of PSCBS relative to extant
methods on previously simulated data. Second, we show that PSCBS
finds interesting genomic regions on glioblastoma data and that its
results are similar for Affymetrix and Illumina arrays.

3.1 Simulation results
We compared PSCBS to other known methods using simulated
data from Staaf et al. (2008). Specifically, they simulated a
normal contamination series for a tumor based on HapMap sample
NA06991 hybridized to the Illumina HumanHap550 array. To model
a tumor, they added to the original data four regions of loss, three
regions of gain and three regions of CN-LOH, as listed in Table 1.
The alterations were reflected in the (log base 2) total CN and
BAF. The percentage of normal cell contamination ranged from
0% (Supplementary Fig. S1) to 100% in increments of 5%; 10%
normal contamination meant 10% normal cells and 90% tumor cells.
The 100% normal contamination data was the same as the original
sample, except as discussed in what follows. The other methods were
‘Paired BAF’ and ‘Unpaired BAF’ segmentation (Staaf et al., 2008),
QuantiSNP (Colella et al., 2007), PennCNV (Wang et al., 2007)
and SOMATICs (Assié et al., 2008). The results for all methods but
PSCBS were taken from the Staaf analysis. Moreover, in agreement
with the original authors, we have identified and corrected for a
mistake in the simulated dataset causing the simulated total CNs to
be slightly incorrect, cf. Supplementary Materials. The correction
was not designed to give us an advantage in this assessment.

3.1.1 Genotyping and PSCBS We used the 100% normal
contamination data as the reference sample for the purpose of

Table 1. The regions of copy number alteration added to the HapMap sample
NA06991 in the simulation

Region type Chrom. Start End # Loci # Het.

1 CN-LOH 5 1 47700000 9397 2756
2 Loss 5 111789971 112521346 156 79
3 Gain 8 1 45200000 12564 3830
4 Gain 8 128432670 129207869 218 91
5 Loss 9 1 50600000 11201 3889
6 Loss 10 84504379 94825178 1988 648
7 Gain 12 1 132449811 27131 8818
8 Loss 13 31766569 31892852 37 10
9 CN-LOH 17 7431864 11747138 1150 308
10 CN-LOH 17 22800000 78774742 9660 3191

Here ‘CN-LOH’ stands for copy-neutral loss of heterozygosity. This simulation was
originally proposed by Staaf et al. (2008).

genotyping. For segmentation and calling, we treated the test sample
as if it already had been TumorBoost adjusted (Bengtsson et al.,
2010). The reason is that because the tumor sample derived directly
from the normal sample, we would be eliminating all noise in the
tumor sample if we adjusted. Other than not doing TumorBoost, we
ran PSCBS using all the default parameters.

3.1.2 Calling gains and losses PSCBS is a segmentation and
parent-specific calling algorithm, but it does not call gains and
losses; we leave those decisions to the user. For purposes of the
simulation assessment, we needed to make these other types of calls.
We devised a simple calling algorithm. Regions were called gains or
losses based on a sample-specific global threshold. That threshold
was an estimated total CN from PSCBS that was more than 0.25 SDs
from the median estimated total CN across all SNPs. The SDs were
estimated using the residuals between the observed total CNs and
the estimated total CNs from the PSCBS segments. Regions were
called CN-LOH if they were not called gained or lost and if the
parent-specific estimates were unequal. More explanation for this
calling of CN-LOH can be found in Section 4.

3.1.3 Assessment Following Staaf et al. (2008), the sensitivity for
each altered region was the fraction of SNPs that were called altered,
and the specificity was the fraction of SNPs outside an altered region
that were called altered. Overall, as shown in Figure 2, PSCBS
was typically sensitive until the contamination reached 90%. It also
had an average specificity of 0.9996. We compared sensitivities by
averaging the results across levels of contamination. Among all the
methods, PSCBS, SOMATICs and Paired BAF segmentation were
the most sensitive. Among the 10 comparisons, PSCBS was the most
sensitive eight times, Paired BAF segmentation was most sensitive
once (loss in Region 8), and SOMATICs was the most sensitive
once (CN-LOH in Region 10). The sensitivity of SOMATICs was
compromised by its low specificity, as can been seen in Figure 3; it
is the only method without nearly perfect specificity.

PSCBS did relatively least well with the small regions of
alteration. This is counter-intuitive because PSCBS, since it
incorporates all data rather than just heterozygotes like Paired
BAF segmentation, should be particularly sensitive to small
abnormalities. However, PSCBS is for the purpose of the assessment
using a calling algorithm for gains and losses based solely on total
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Fig. 2. Sensitivities for PSCBS and five other methods (Unpaired BAF, Paired BAF, QuantiSNP, PennCNV and SOMATICs) as a function of percentage
normal contamination for 10 chromosomal aberrations. The performances were quantified using the Staaf et al. (2008) simulated dataset, in which copy-neutral
LOH, single-copy gain, single-copy loss (hemizygous loss) and single-copy gain (including whole-chromosome trisomy) have been added to the HapMap
sample NA06991 by adjusting the CN mean levels, cf. Table 1. The PSCBS results have been added to those obtained by Staaf et al. (2008).

Fig. 3. Specificities for PSCBS and five other methods (Unpaired BAF,
Paired BAF, QuantiSNP, PennCNV and SOMATICs) as a function of normal
contamination. The same simulated dataset and annotations as in Figure 2
are used.

CN. In this simulation, alterations are more strongly reflected in the
allele B fraction than in the total CN, so it does not highlight one of
the advantages of PSCBS. Overall, PSCBS compares favorably with
other methods. Results for sensitivity can be found in Supplementary
Table S1.

3.2 Glioblastoma data results
We examined the performance of the PSCBS algorithm on
glioblastoma data from the Cancer Genome Atlas (TCGA). TCGA
is a comprehensive effort to improve the understanding of cancer
through application of genomic analysis (The Cancer Genome
Atlas (TGCA) research Network, 2008). We evaluated the first
batch of glioblastoma samples that were part of the TCGA for
which there were 23 tumor/normal pairs. We analyzed data from
both the Affymetrix GenomeWideSNP_6 array and the Illumina
HumanHap550 array. These arrays contained approximately 900k
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Fig. 4. Whole-genome (chromosomes 1-22) PSCBS analysis of TCGA sample TCGA-02-0007. The top is from hybridization to the Affymetrix
GenomeWideSNP_6 chip type (1 759 189 loci and 871 166 SNPs of which 234 058 are heterozygous in this sample) and the bottom is from hybridization
to the Illumina HumanHap550 chip type (561 466 SNPs of which 175 585 are heterozygous). The black points represent total CN for all loci, and the gray
points represent minimum CN for SNPs called heterozygous. The upper (purple) lines are PSCBS estimates of total CN, and the lower (blue) lines are the
same for minor CN. Regions called LOH and allelic balance are highlighted at the horizontal axis as black and gray lines, respectively. The Affymetrix and
the Illumina technologies show great similarity in their global segmentation patterns, such as finding all the same large regions of LOH.

and 550k SNPs, respectively. The Affymetrix array also contained
about 900k non-SNP loci. We examined only the autosomes. The
Affymetrix data was processed by us using an allele-specific version
of the CRMAv2 method (Bengtsson et al., 2009a), while the Illumina
data was processed by the TCGA consortium.

PSCBS was run at default parameter values, except that for both
array types, we eliminated loci that were extreme outliers in total
CN; these were more than 20 SDs from any of the 10 nearest loci.
We also did not call regions with fewer than 10 heterozygotes.

We focused here on sample TCGA-02-0007 because it had an
interesting pattern of alteration. For this particular sample, the
methods for choosing the thresholds for calling segments suggest
�AB =0.12 and �LOH =0.60 for the Affymetrix data, and �AB =
0.077 and �LOH =0.59 for the Illumina data.

Segmentation results can be found in Figure 4 and in
Supplementary Table S2. Large regions of LOH were found on both
platforms for chromosomes 6, 7, 10, 11, 13, 14, 19 and 22. Large
regions of gain were found on both for chromosomes 7 and 9. While
we do not know the true CNs, it is encouraging that PSCBS when
applied to both technologies gave similar results, which is consistent
with previous studies comparing replicated CN data originating from
different sources (Bengtsson et al., 2009b). Figure 5 has a closer
look at chromosomes 7, 11 and 19 from the Affymetrix array. In
addition to the alterations already mentioned, CN-LOH was found
on chromosome 7q. All of 7p and part of 7q near the centromere
showed gain in both parental chromosomes.

We show the segmentation of a second sample in Supplementary
Figure S2. Note that, as shown in Figure 4, the analysis of the

Affymetrix data was more complicated than that of the Illumina
data because of the greater variability in the minimum CN. PSCBS,
however, worked similarly for either type of data. Finally, to
further assert that PSCBS produces valid results, we applied Paired
BAF segmentation (Staaf et al., 2008) to the same sample and
confirmed that the two methods agree on the major aberrant regions
(Supplementary Table S3).

4 DISCUSSION
We developed an extension of CBS to estimate parent-specific
CN from SNP data. In a simulation it identified gains and losses
accurately and performed favorably compared with some of its
competitors. A matched Affymetrix and Illumina real data example
showed consistent and visually appealing segmentation results.

PSCBS consists of a concatenation of several tests and estimates.
In an ideal world we would compute an exact probability that it
estimates allele-specific CN correctly. Anyone who sees explicit
computation as a target will conclude that at any step of the process,
an accurate calculation would be conditional on the outcomes of all
previous steps. Such a computation is impossible, no matter the order
in which it is attempted. Despite our inability to provide a precise
probability, we trust that readers will agree that there are persuasive
arguments for use of the algorithm. They include demonstration that
it is successful in achieving goals for which it is intended.

As mentioned in Section 3.1, regions in the simulation were called
CN-LOH if they were not called gained or lost and if the parent-
specific estimates were unequal. The first should be uncontroversial,
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Fig. 5. Three chromosomes from the Affymetrix technology shown in Figure 4. The array identifies gain (chromosome 7), LOH (all three chromosomes) and
CN-LOH (chromosome 7q). The same annotations were used as in Figure 4.

but the second needs explanation. The simulation consisted of a
mixture of tumor and normal cells. In a typical analysis, if there was
a high degree of normal contamination, we would not want to call
the region LOH. However, if the CN was normal but the parental
CNs were imbalanced, we would conclude that there is some degree
of LOH. So here we are equating copy-neutral LOH to some degree
of copy-neutral LOH. Alternatively, we could have adjusted �LOH
to get the same results, but this seems artificial.

An aspect of our algorithm is that it does not identify CN
alterations that are already in the germline. For example, if there
was a region with uniparental disomy (Robinson, 2000), where a
subject inherits two copies from one parent, Paired PSCBS would
not find it because there would be no difference between the tumor
and the normal. While some may consider this to be a flaw, we
believe it is a feature. Our purpose is to identify changes that come
about during tumorigenesis and tumor evolution. A later analysis
could be undertaken to find germline abnormalities.

Furthermore, it is important to acknowledge that PSCBS does
not generate calibrated PSCNs, which is illustrated by the fact that
although Affymetrix and Illumina agree to a great extent on the
change-point locations, they differ somewhat in the estimated CN
levels (Fig. 4). This means, for instance, that it is not valid to interpret
the estimated PSCNs as true integer CN levels. This further stresses
the importance of PSCN calibration, which is, to the best of our
knowledge, still not investigated well enough; it is an important
task from which all PSCN methods would gain and which we plan
to undertake in a future study.

Contrary to popular belief, we wish to emphasize that for
modern Affymetrix arrays, we can hereby produce high-quality
PSCN segmentation from a single pair of tumor–normal samples
without the need of external references; this brings many
advantages (Bengtsson et al., 2010). The reason for this is that the

CRMAv2 is a truly single-array method for estimating locus-level
TCN and DH signals, and both TumorBoost as well as Paired PSCBS
require only a single tumor–normal pair.

On the other hand, the Paired PSCBS algorithm does indeed
require paired data. The germline reference sample is used to identify
heterozygotes and to improve allele B fraction estimates (Bengtsson
et al., 2010). While the latter is a luxury, the former is crucial, even if
the genotypes are estimated using an external method. Thus, without
germline genotypes it is not possible to perform DH segmentation.
In Staaf et al. (2008), a heuristic is proposed for inferring which are
the heterozygous SNPs based on the allele B fractions of the tumor.
This is doable in segments where the homozygous and heterozygous
BAFs are well separated, which may be the case when the DH level
is not too large and the noise level of the BAFs is low. In case of pure
LOH this would not work, although, as noted by several (Bengtsson
et al., 2010; Staaf et al., 2008), normal contamination would to
some extent play in our favor. Regardless, this heuristic would break
down eventually, and there would be no possibility to distinguish
homozygous and heterozygous SNPs from tumor alone. Instead,
we are developing an alternative strategy for segmenting the allelic
ratios in the setup of unpaired data, which will be the subject of a
future publication.
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